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Sensitivity analysis

* How the change 1n a parameter, translates into a change 1n a
quantity, 1.e., an eigenvalue, an equilibrium, a variable at
time, T.

* Sensitivities are slopes

* Elasticities standardize by the mean of the variable.
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Variables and parameters
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FIGURE 8.1. State-space model describing the evolution of the latent state variable, X,
conditional on the observations, Y. In this random-walk example the only components
are observation error, 7, , and process error, 7 . The gray arrows indicate the connec-

tions relevant for estimating the posterior distribution for X
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Local sensitivity - OAT
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FIGURE 11.1. Translation of uncertainty in an input parameter into uncertainty in an
output. The bold black curve illustrates the sensitivity of NPP to stomatal slope, with the
black diamonds denoting the median and quantile equivalents of +1,2,3 standard devia-
tions for stomatal slope based on a one-at-a-time sensitivity analysis. The probability
density on the x-axis represents the uncertainty in one model input—in this case, the
stomatal slope (Leuning 1995) parameter in the Ecosystem Demography terrestrial bio-
sphere model (Medvigy et al. 2009). The probability density on the y-axis is the uncer-
tainty in NPP attributable to the uncertainty in stomatal slope, with the dashed lines in-
dicating the translation of specific values. Reproduced from Dietze et al. (2014).
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Definitions

* Local sensitivity — applies at one location 1n parameter space.
* Global sensitivity — considers all parameter values.

* One-at-a-time sensitivity (OAT) — all parameters equal to
their mean and vary one;
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Global sensitivity - Monte Carlo

* Brute force — computationally demanding

* Sample from parameter space and run model. Uniform 1s
common, but not necessarily recommended (?)

* Never truly global - sensitive to the domain chosen.
Recommends setting the range to 95% or 99% CI.

* Estimate the sensitivity by fitting a multiple regression to
the output as a function of the randomly sampled inputs

Dietz 2017. Ecological forecasting.



Global sensitivity - Monte Carlo
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FIGURE 11.2. Monte Carlo sensitivity analysis of Gaussian Plume atmospheric dispersion
model to variability in wind speed and atmospheric pressure. Sensitivity is approximated
by the slope, 2, while uncertainty partitioning is approximated by the R2.
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Global sensitivity — other approaches

* Entire books on this topic, 1.e., Saltell1 et al. 2008

* For computational efficiency:
* Halton sequence

* Sobol’s LP sequence

* Latin Hypercube Sampling

* Use an emulator (Box 11.1)
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Latin Hypercube Sampling

Sensitivity and Uncertainty Analysis of
Complex Models of Disease Transmission:
an HIV Model, as an Example

S.M. Blower and H. Dowlatabadit

School of Public Health (Epidemiology) 140, Earl Warren Hall, University of California,
Berkeley, California 94720, USA. tDepartment of Engineering & Public Policy, Carnegie
Mellon University, Pittsburgh, PA 15213 USA.

Summary

HIV transmission models have become very complex. The behavior of some of these models may
only be explored by uncertainty and sensitivity analyses, because the structural complexity of the
model are coupled with a high degree of uncertainty in estimating the values of the input
parameters. Uncertainty analysis may be used to assess the variability (prediction imprecision) in
the outcome variable that is due to the uncertainty in estimating the input values. A sensitivity
analysis can extend an uncertainty analysis by identifying which parameters are important in
contributing to the prediction imprecision (i.e., how do changes in the values of the input
parameters alter the value of the outcome variable). In this paper an uncertainty and a sensitivity
analysis are described and applied; both analyses are based upon the Latin Hypercube Sampling
(LHS) scheme, which is an extremely efficient sampling design proposed by McKay, Conover &
Beckman (1979). The methods described in this paper have not previously been applied to
deterministic models of disease transmission, although these models have many characteristics in
common with the risk assessment models that the strategies were designed to investigate. The utility
of the LHS uncertainty and the LHS/PRC (Latin Hypercube Sampling/Partial Rank Correlation)
sensitivity analysis techniques are illustrated by analyzing a complex deterministic model of HIV
transmission.

Key words: Uncertainty analysis; Sensitivity analysis; Sampling design; Mathematical models;
Epidemiology.



Latin Hypercube Sampling

Define the probability distribution functions for the K parameters and
the state variable nitial values

Calculate the number of simulations

Divide the range of each of the K parameters into N equi-probable
intervals

Create the LHS table

Sample the values of the input parameters and perform the N
simulations

Analysis of the outcomes: uncertainty analysis

Analysis of the outcomes: sensitivity analysis



LHS — HIV model

Parameter definitions for the HIV model. All of the transmission efficiencies are
conditional on the fact that the partner or needle is infected.

Bab HIV transmission efficiency per buddy partnership

Ban HIV transmission efficiency per needle injection
Btm heterosexual transmission efficiency per partnership (female to male)
B heterosexual transmission efficiency per partnership (male to female)

cn(t)  rate of change of sex partners per year (female buddy-users) at time ¢
ci(t)  rate of change of sex partners per year (female stranger-users) at time ¢
ci(t)  rate of change of sex partners per year (female non-IVDUs) at time ¢
co(t)  rate of change of sex partners per year (male buddy-users) at time ¢
cms(t)  rate of change of sex partners per year (male stranger-users) at time ¢
cmn(t)  rate of change of sex partners per year (male non-IVDUSs) at time ¢

is rate of sharing needles per year (for female stranger-users)

b rate of sharing needles per year (for male stranger-users)

J rate of change of buddy partners per year (for female buddy-users)
- rate of change of buddy partners per year (for male buddy-users)
q, vertical transmission efficiency (seropositive mother, without AIDS)
g vertical transmission efficiency (AIDS mother)

S, average adult survival time (years)

S, average pediatric survival time (years)

v, average adult incubation time (years)

v, average pediatric incubation time (years)

Blower & Dowlatabadi (1994)



1. Define the PDFs for the parameters

Table 2
Parameter distribution functions

Standard

Parameter Min Max Median deviation Function shape
Bab Ban 1 0-56 0-23 triangular (peak at B,,)
Ban 0 1 0-28 0-23 triangular (peak at 0-0)
Bim 0 0-5 0-25 0-15 uniform
Boms 0 0-5 0-25 0-15 uniform
co(t) 1 11 1 1-74 left skewed
cinl(t) 1 20 2-19 2-46 left skewed
ce(t) 1 100 2 20.99 left skewed
Caull) 1 20 1 3-02 left skewed
Cailt) 1 38 2 4-98 left skewed
Crms(?) 1 15 1 2-94 left skewed
i 13 9,265 299 1,201 left skewed
U 13 3,120 228 738 - left skewed
J 0 4 1-8 0-77 triangular (peak at 1-0)
T 0 4 1-8 0-76 triangular (peak at 1-0)
q, 0 1 0-28 0-23 triangular (peak at 0-0)
q- q, 1 0-56 0-23 triangular (peak at q,)
S, 1-0 50 1-0 0-85 left skewed
Sp 0-21 4-8 1-04 1-09 left skewed
v, 1-36 20 8 3-71 Weibull
v 0-1 20 0-33& 5-5 4-99 mixture of two Weibulls

Blower & Dowlatabadi (1994)




2. Calculate the number of simulations

* Necessary N > (4/3)K

* When N 1s large, better ability to detect effects in statistical
analysis (PRCC)

* Blower & Dowlatabadi (1994): K=20+ 7, N =100

Blower & Dowlatabadi (1994)



3. Divide each parameter range into N
equi-probable regions
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Figure 2. Creating and sampling the equi-probable intervals. In the Latin Hypercube Sampling design, each
parameter is defined in terms of a probability density function (pdf). These pdfs are sliced into N equi-probable .
intervals—where N is the number of simulations. For each simulation a value for each parameter is selected from BlOWCI‘ & Dowlatabadl (1994)

one of these intervals at random, and without replacement.



4. Create the LHS table

* N x K table, random sampling of PDF indices, i, without
replacement

IIIIIIIIIIIIIIIIIIiIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIiIIIIIIIIIIIIIIIIIIIIIliiiiiiiiiiiiiiill
1 =73 =22 =10 1I=12

2 =22 =4 =22 =17

3 i=1 =77 =65 1I=91

N determined determined determined determined determined



5. Run the N simulations

gl
## calculate mean of all inputs

ppt.mean <- matrix(Capply(ppt_ensemble,2,mean),1,NT) ## driver
## parameters

params <- as.matrixCout$params)

param.mean <- apply(params,2,mean)

## initial conditions

IC <- as.matrix(out$predict)

N.det <- forecastN(IC=mean(IC[,"N[6,30]"1),
ppt=ppt.mean,
r=param.mean|"r_global"],
Kg=param.mean|"K_global"],
beta=param.mean|"beta"],
alpha=param.mean|"alpha_site[6]"],
Q=0, ## process error off
n=1)

## Plot run
plot.run()
lines(time2,N.det,col-"FlgaLy" , 1wd=3)



6. Outcomes: Uncertainty analysis

Table 3.
Descriptive statistics from the uncertainty analysis

Cumulative number of aids cases

in 30 years o o .
Prediction precision is low
Adult cases Pediatric cases
Minimum 49,134 246
Maximum 347,420 161,615
Mean 238,571 37,330
Median 257,085 22,663
Variance 4-7 % 10° 1-2%10°
Sth percentile 116,422 1,780

95th percentile 333,932 108,173




7. Outcomes: sensitivity analysis

Table 4

Partial rank correlation coefficients

e PRCC determines statistical

Adult cases Pediatric cases relationship between each mput .
variable and each outcome variable

P t PRCC P t PRCC . . . .

arameer i while keeping all other inputs at their

Buoi& B 0-84%*F g, 0-77+** mean value

v, 0T BB 07T

o) 020 X, 036+ * Assumes monotonicity between input

() 0-20%%  c,(0) 0-36%+* and outcome — assess with scatter plot

U B N |

() 022 o (0) 028+ » Sign of the PRCC indicates the

c4(0) 021 X340) 0-20* qualitative effect

dn . *

The PRCCs are between the input values of the * Magnitude of the PRCC importance
bio]ogicalibehe(lvlioural tlral?smissiorll) pa;an;etlers ;mdd.the of uncertalnty of the Hlpllt quantl‘tyb(l)n
output values (the cumulative number of adult and pediat- 1 1Q1
ric AIDS cases in 30 years). The results are significant at the lmpI'CClleIl Of the Olltpllt variapic

the 0-05 level (*), the 0-01 level (**) or the 0-001 level
(***).



HIV model conclusion

* The two heterosexual transmission efficiencies and the average
adult incubation period) are the most critical in affecting the
prediction precision of the future number of adult AIDS cases.

* The estimation uncertainty of these three parameters are also
critical in contributing to the prediction precision of the number of
pediatric AIDS cases, however 1n this case the vertical transmission
efficiency is also of great importance (see Table 4).

* Note: HIV model has stable dynamics; monotonicity assumption
may not be satisfied for models with chaos, 1.e. measles



Global sensitivity — sampling methods

100x Individual samples

* Group sampling ABCDEFGHI J 10smplepoo
- 1( Q)
* Super-saturated design 2 O
3 O
4 O
5 O
6 O
7 (3
8 O
9 O
10 @
"l!..!,‘..‘ 10 sample pool

Pooled testing for SARS-CoV-2 could provide the solution to UK’s testing strategy



https://blogs.bmj.com/bmj/2020/09/30/pooled-testing-for-sars-cov-2-could-provide-the-solution-to-uks-testing-strategy/

Key concepts - sensitivity

1. Sensitivity analysis assess how a change 1n an input
translates into a change 1n output

2. The curse of dimensionality: parameter space increases
exponentially with the number of parameters

3. The range of parameters explored should be tied to the
probability distribution of the inputs

*  Monte Carlo 1s a brute force approach, there are other
more computationally efficient sampling strategies

Dietz 2017. Ecological forecasting.
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Uncertainty propagation

* A forecast without a statement of uncertainty 1s of limited
value

* Uncertainty propagation refers to inputting the uncertainty
into the model to determine the uncertainty in the output

o Approach: analytical or numerical

oOutput: full probability distribution or statistical moments

Dietz 2017. Ecological forecasting.



Variable transformation

* Approach: Analytical; Output: full probability density

iy = 1) [ L2
Y

* Not possible except in sitmplest of cases

Dietz 2017. Ecological forecasting.



Analytical moments

* Approach: Analytical; Output: Statistical moments

y = po+ b1z +e
e ~ N(0,0°)

TABLE 11.2. Properties of Means

E[c] = Mean of a constant.
E[X + ] E[X] + ¢ Mean plus a constant.
E[cX] = ¢c-E[X] Mean times a constant.
E[X + Y] = E[X] + E[Y] Means are additive.
Ela + bX + cY] = a + bE[X] + cE|y] Application of preceding rules.
E[E[X|Y]] = E[X] Iterated expectation.
E[g(X)] # g(E[X]) Jensen’s inequality, weak form (unless g(x) is
linear).
E[XY] = E[X]E[Y] + Cov[X, Y] Multiplication.

Dietz 2017. Ecological forecasting.



Analytical moments

* Approach: Analytical; Output: Statistical moments

y = 0o+ b1x + €
e ~ N(0,07)

TaBLE 11.3. Properties of Variances

Var|c] =0

Var[X + c] = Var[X]

Var[cX] = ¢*Var|X]

Var[ X + Y] = Var[X] + Var|Y] + 2Cov[ X, Y]

Varla + bX + cY] = b>Var[X] + ¢*Var[Y] + 2bcCov[X, Y]
Var[2a X ] = 22aaCov[X, X]

Var[X] = Var|E[X|Y]] + E[Var[X|Y]]

Variance of a constant
Variance plus a constant
Variance times a constant
Sum of variances

Application of preceding rules
Generalizes sum of variances

Variance decomposition

Dietz 2017. Ecological forecasting.




Analytical moments — Taylor series

* Approach: Analytical; Output: Statistical moments

E[fix)] ~ E[f(a) + L o)+ 1D gy

TABLE 11.2. Properties of Means

E[c]=c Mean of a constant.

E[X +c]=E[X] + ¢ Mean plus a constant.

E[cX] = ¢-E[X] Mean times a constant.

E[X + Y] = E[X] + E[Y] Means are additive.

Ela + bX + cY] = a + bE[X] + cE[y] Application of preceding rules.

E[E[X|Y]] = E[X] Iterated expectation.

E[g(X)] # g(E[X]) Jensen’s inequality, weak form (unless g(x) is
linear).

E[XY] = E[X]E[Y] + Cov[X, Y] Multiplication.

Dietz 2017. Ecological forecasting.



Monte Carlo (distribution)

* Approach: Numerical, Output: full probability density

1. Sample random values, x, from the (joint) probability distribution of X.
2. Calculate y, = f(x) for all samples of X.
3. Use the sample of y’s to approximate the PDF of Y.

Dietz 2017. Ecological forecasting.



Monte Carlo (distribution)

* Approach: Numerical, Output: full probability density
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FiGURE 11.6. Monte Carlo uncertainty propagation in a linear regression model. Bottom
left: Bivariate scatterplot of samples from the slope and intercept illustrates the strong
negative correlation between these parameters. Top: Regression confidence interval (shaded
area) and the line drawn from a single sample from the slope/intercept distribution (solid
line) evaluated across a sequence of points (diamonds). Bottom right: Histogram of pre-
dicted Y values along the dotted vertical line in the top panel.
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Ensemble (Stats)

* Approach: Numerical, Output: full probability density

* Closely related to Monte Carlo, but smaller sample size: 10-
100

(mm)

precipitation
200 400 600 800 1000

30 35 40 45 50 55 60

time

Dietz 2017. Ecological forecasting.



Uncertainty analysis

* Attribute the uncertainty in some output, to different inputs

Parameter uncertainty
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FIGURE 11.8. Predictive uncertainty (distribution on the y-axis and reported standard
deviation, SD,) is controlled by parameter uncertainty (distribution on the x-axis, varies
by column) and model sensitivity (slope of diagonal line, varies by row).
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Partitioning uncertainty

* General linear models (R? = 1-SS/SS+...)

Source df SS
PSoil 1 1473.6
Res 7 800.4
Total 8 2274.0

MS
1473.6
114.34

F
12.89

——— p

Here are some additional statistics.
> = explained variance = SSmodet / SStot

By Dave Schneider
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7.

Partitioning uncertainty

* General linear models (R? = 1-SS/SS+...)

ANOVA table — Frequentist with fixed Type I error.

Calculate MS, F, and p
Source df SS
Source 2 266.5333
Level 1 3168.267
S*L 2 1178.133
Error 54 11586.00
Total 59

By Dave Schneider

MS
133.2667
3168.267
589.0667
214.5556

F P
0.62 0.541132
14.77 0.000322
2.75 0.073188

Can’t reject Ho
Reject Ho
Can’t reject Ho

Weight Gain (g)

105

100 H

95 -

90 +

85 -

80 -

75

Low High
Protein Level



Parameter

Partitioning uncertainty

Growth respiration
Fine-root allocation
Leaf turnover rate
Specific leaf area
Vc.max

Seedling mortality
Mortality coefficient
Reproductive allocation
Photosynthesis min. temp.
Quantum efficiency

Root turnover rate

Seed dispersal
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° . o FIGURE 11.9. Partitioning of the uncertainty in predictions of switchgrass (Panicum vir-
gatum) aboveground biomass by the Ecosystem Demography model under both prior
—e o (gray) and posterior (black) parameter estimates generated from a meta-analysis of trait
. . data (chapter 9). Parameters are ranked by their component uncertainties (column C),
which are calculated from the parameter uncertainties (visualized as the CV, column A),
—® and the OAT model sensitivity to that parameter (visualized as parameter elasticity, col-
o umn B). Reproduced from LeBauer et al. (2013).
|
—.
I | | | | | | I | | | | | |
0 20 40 60 80 100 -2 0 2 4 0 5 10 15 20
CV (%) Elasticity SD explained (%)

Dietz 2017. Ecological forecasting.



Tools for model-data feedback

* How much effort should be invested 1n estimating particular
model mputs, given limited resources?

* Standard error 1n a parameter estimate decreases with sample
S1Z¢ o
SE(n) = —
"=

* A general approach to power analysis 1s Monte Carlo
simulation of different sampling schemes or sizes

Dietz 2017. Ecological forecasting.



Observational
design

Dietz 2017. Ecological forecasting.
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FIGURE 11.10. Observational design. Top left: Power analysis estimating reduction in
parameter uncertainty as a function of sample size. Top right: Translation of parameter
uncertainty into model output uncertainty for two different variables. Bottom left: Com-
bined output uncertainty as a function of sample size with the optimal design indicated
by color and shading. For example, at a sample size of 8 the optimal design is six samples
of variable 2 and two of variable 1. Bottom right: Output uncertainty as a function of
overall project cost assuming different marginal costs for the two data types. Compared to
the equal-cost design (bottom left), there is considerably greater sampling of variable 1.



Key concepts

4. Uncertainty propagation 1s the process of translating
uncertainty in our model inputs 1nto uncertainty in model
outputs

7. The uncertainty in a deterministic forecast with known parameters and
boundary conditions is dependent upon three components: the uncertainty
about the state, Var[x ], the sensitivity of the system, (X )%, and the process
error, 4. In ecological systems with stabilizing feedbacks, f'(X,) < 0, process
error dominates forecasts.

9. A parameter can be important either because it 1s sensitive,
or because 1t’s unknown.

Dietz 2017. Ecological forecasting.



Key concepts

9. A parameter can be important either because it 1s sensitive,
or because 1t’s unknown.

10. More precise answers require more computation, while
approximations require stronger assumptions.

Dietz 2017. Ecological forecasting.



